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Abstract

We consider a mechanical system consisting of a circular cylindrical shell and perfectly rigid body attached to one of the

shell ends. Starting from the principle of virtual works, we construct a mathematical model of the equilibrium state of our

system subjected to stresses of general form. A boundary eigenvalue problem describes free vibrations of the ‘‘body – shell’’

system, and its approximate solution is determined. We construct the exact solution of the above problem by replacing the

shell with an equivalent Timoshenko beam. The effect of the rigid body on the system vibrations is estimated, and the

accuracy of the beam approximation to shell bending vibrations is studied.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Thin elastic shells of revolution with attached bodies are widely used in present-day mechanical and civil
engineering. Investigation of dynamics of such constructions under action of various non-stationary loads
requires solving a rather complicated partial differential initial boundary-value problem. Generally, solutions
of this problem are based on reduction to a set of ordinary differential equations with independent time
variable. For this purpose the natural modes of free vibrations of the structure are used. A set of ordinary
differential equations in generalized coordinates obtained in that way can be investigated with known
methods. That is why determination of frequencies and modes of natural vibration of composite mechanical
systems is an important first step in investigating their dynamic behaviour under action of lumped and
distributed loads.

On the other hand, simple mathematical models are worth developing to meet engineering needs. (Of
course, they must adequately describe dynamic behaviour of shell constructions.) Such models can be derived
on the basis of various beam theories used to approximate bending vibrations of shells. The problem of
determination of applicability limits for such simplified approaches then becomes of crucial importance.

The longitudinal and torsional vibrations of a cylindrical shell with masses attached at its ends were
investigated by Breslavsky [1,2]. In [3], Palamarchuk studied interaction between a cylindrical shell and
perfectly rigid body attached to the shell inside with rigid bars. The work [4] deals with construction of a
mathematical model of interaction of a cylindrical shell with a perfectly rigid body attached to one of its ends.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Shveiko et al. [5] have derived the exact solution of the problem of natural vibrations of beams joined to each
other with a circular cylindrical shell. An approximate solution of the above problem was proposed in Ref. [6].
Rabinovich et al. [7] advanced a theory of vibrations of constructions supporting elastic vessels with liquid. In
their calculations, they applied an elastic Euler–Bernoulli beam with a torque shell of revolution (attached to it
with elastic braces) filled with an ideal incompressible liquid. Trotsenko and Kladinoga [8] investigated natural
vibrations of a prestressed zero-torque shell of revolution (made of a hyperelastic material) with a rigid disk
attached to one of the shell ends.

It is a traditional engineering practice to neglect the secondary effects due to shear strain and rotary inertia
of the shell cross-section when applying the beam approximation of bending vibrations of shells. However,
Forsberg [9] considered free vibrations of a thin cylindrical shell and showed that the above secondary effects
become of primary importance for short shells, especially when calculating the higher vibration modes.

There exist a number of works dealing with investigation of vibrations of Timoshenko beams with attached
bodies of finite sizes. A sufficiently complete review of these works was given by White and Heppler in Ref.
[10]. One should note also the work [11] by Rossi and Laura who obtained comprehensive results (in table and
graphic forms) of calculations of frequencies and modes of vibrations of a Timoshenko beam clamped at one
end and carrying a finite mass at the other. From the results of the above works one can conclude that
vibrations of beams with attached bodies are studied rather well. At present, the researchers concentrate their
efforts on refinement of calculation algorithms and detection of new mechanical effects of interaction between
a body and beam at their joint vibrations.

This work deals with construction of a mathematical model and solving the problem on free non-
axisymmetric vibrations of a circular cylindrical shell with a rigid body of finite size attached to one of the shell
ends. The construction of approximate analytical solutions of the stated spectral problems is based on their
equivalent variational formulations and Ritz method. We investigate the applicability limits for simplified
statements of the problem obtained with application of different beam theories.
2. Statement of the problem

Let us consider a mechanical system consisting of a thin-walled circular cylindrical shell (of radius R and
length l) and a perfectly rigid body that is rigidly attached to one of the shell ends. The other shell end is
assumed to be rigidly fixed. Let the body have two mutually perpendicular planes of symmetry whose
intersection line is the axis Oz that coincides with the longitudinal axis of the shell (Fig. 1). Let the coordinate
Fig. 1. The general view of the construction and the system of coordinates.
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plane Oxz coincide with one of the planes of symmetry of the body and the origin of coordinates lie in the
plane of the fixed shell end.

To describe displacements of the rigid body, we introduce a Cartesian system of coordinates Cxcyczc whose
origin lies at the centre of inertia of the rigid body and axes Cxc and Cyc are parallel to Ox and Oy,
respectively. The unit vectors of the system of coordinates Cxcyczc will be designated as ic, jc and kc. We refer
the middle surface of the shell to the orthogonal system of curvilinear coordinates z and j where j is the polar
angle counted from the axis Ox. Local orthogonal bases e1, e2 and e3 are referred to these coordinates. In this
basis, e1 and e2 are the unit vectors that are tangential to the lines of principal curvatures of the middle surface
of the shell and are oriented along increase of coordinates z and j.

Let us assume that the following loads are applied to the above construction: (i) a small load of general
type—a force concentrated at the point C and a moment about the point C

DF ¼ DF 1ic þ DF 2jc þ DF3kc; DM ¼ DM1ic þ DM2jc þ DM3kc,

that act on the rigid body, and (ii) a distributed load

DQ ¼ DQ1e1 þ DQ2e2 þ DQ3e3,

acting on the shell. The system experiences strains and displacements and, as a result, comes to a disturbed
state of equilibrium. We shall characterize this state with the displacement vector of the points of the middle
surface of the shell,

U ¼ ue1 þ ve2 þ we3,

the vector of translational displacement of the centre of mass of the rigid body and the vector of its angular
displacement about this centre,

U0 ¼ u01ic þ u02jc þ u03kc; y0 ¼ W01ic þ W02jc þ W03kc.

Here we assume that the displacements of the rigid body and shell are small, so that linear theory is valid.
From the condition that the displacements of the shell and rigid body in the contour L (formed by the shell

cross-section at z ¼ l) are the same it follows that

U ¼ U0 þ ½y0 � r0�, (1)

where r0 ¼ ðR cos jÞic � ðR sin jÞjc � lckc is the radius vector of the points of the contour L in the system of
coordinates Cxcyczc; lc is the distance from the point C along the axis Oz to the shell end section at which the
rigid body is attached.

From Eq. (1) and continuity condition for the corresponding angles of rotation of the rigid body and shell,
with allowance made for interrelation between the unit vectors of the system of coordinates Cxcyczc and unit
vectors e1, e2, e3

ic ¼ � sin je2 þ cos je3; jc ¼ cos je2 � sin je3; kc ¼ e1, (2)

one obtains the following geometric boundary conditions in the contour L:

u ¼ u03 � W01R sin j� W02R cos j,

v ¼ ðW02lc � u01Þ sin j� ðW01lc þ u02Þ cos j� W03R,

w ¼ �ðW01lc þ u02Þ sin j� ðW02lc � u01Þ cos j,

qw

qz

����
z¼l

¼ W01 sinjþ W02 cos j. ð3Þ

To obtain the equilibrium equations for our system, let us apply the principle of virtual works

dP ¼ dA, (4)

where dP is the variation of the potential energy of the elastic strain of the shell, dA is the work of external
forces in virtual works of the system.
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The strain potential energy for a thin cylindrical shell may be presented as [12]
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where E ðnÞ is the modulus of elasticity (Poisson ratio) of the shell material, S (h) is the middle surface
(thickness) of the shell.

The first integral in Eq. (5) is the stretching and shear potential energy, while the second one is the bending
and torsion potential energy. Here, we applied the known Mushtari–Donnell theory of shells [12,13],
according to which one neglects shell tangential displacements in the expressions for curvature and torsion
variations.

The work of external forces applied to the body and shell is

A ¼

Z
S

Z
DQ � udSþ DF � u0 þ DM � y0. (6)

Let us denote the variations of displacements of the shell and rigid body and of the angles of rotation of the
body by du, du0 and dy0, respectively. Then, after substitution of Eqs. (5) and (6) into Eq. (4) and integration
by parts of the double integrals, the variational equation (with allowance made for the conditions (3)) may be
brought to the following form:
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Here we use the following designations:
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After setting the coefficients at du, dv and dw in the surface integrals (7) equal to zero, we obtain the known
equilibrium equations for the cylindrical shell. And the equilibrium equations for the rigid body follow from
the condition that the coefficients at variations of parameters of its motion vanish.

The equations of free vibrations of the ‘‘body-shell’’ system can be obtained from the derived equilibrium
equations after applying the d’Alembert’s principle and setting

DQ ¼ �rh
q2u
qt2

; DF ¼ �m0
q2u0
qt2

,

DM1 ¼ �Jxc

q2W01
qt2

; DM2 ¼ �Jyc

q2W02
qt2

; DM3 ¼ �Jzc

q2W03
qt2

, ð8Þ

where Jxc
, Jyc

and Jzc
are the moments of inertia of the rigid body relative to the axes Cx, Cy and Cz,

respectively; m0 is the mass of the rigid body and r is the density of the shell material.
When considering steady-state free vibration of our system with frequency o, we set fU;U0; y0g ¼
f ~U; ~U0; ~y0geiot: (From here on we shall omit the tilde.) As a result, determination of the amplitude values for
six parameters of motion of the rigid body and three components of the shell displacement vector is reduced to
integration of a set of partial differential equations

L11ðuÞ þ L12ðvÞ þ L13ðwÞ ¼ �o2rhgu,

L21ðuÞ þ L22ðvÞ þ L23ðwÞ ¼ �o2rhgv,

L31ðuÞ þ L32ðvÞ þ L33ðwÞ ¼ o2rhgw ð9Þ

with non-local boundary conditions at z ¼ lI
L

ðQ�1 cos j� S sin jÞds ¼ m0o2u01,I
L

ðQ�1 sin jþ S cos jÞds ¼ �m0o2u02,I
L

T1 ds ¼ m0o2u03;

I
L

ðP1 sin jþ lcS cos jÞds ¼ o2Jxc
W01,I

L

ðP1 cos j� lc S sin jÞds ¼ o2Jyc
W02;

I
L

RS ds ¼ o2Jzc
W03. ð10Þ

One should add to the boundary conditions (10) the geometric compatibility conditions (3) and the condition
of rigid fixation of the shell end at z ¼ 0.

It should be noted particularly that the boundary conditions (10) are natural for the corresponding
functional on the class of functions satisfying conditions (3) and the geometric conditions of fixation of that
shell end which is free of the rigid body.
3. Construction of solution

Smallness of the parameters of motion and system symmetry make it possible to present general motion of
the system as superposition of two independent components, along and about the longitudinal axis, as well as
in two mutually perpendicular planes Oxz and Oyz. In what follows, we shall consider the transverse
vibrations of the construction in one of the planes of symmetry (let it be the plane Oxz). In this case the
displacement of the middle surface of the shell may be sought in the following form:

uðz;jÞ ¼
X1
n¼1

unðzÞ cos nj; vðz;jÞ ¼
X1
n¼1

vnðzÞ sin nj,

wðz;jÞ ¼
X1
n¼1

wnðzÞ cos nj. ð11Þ
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According to the expressions (11), the forces and moments in the middle surface of the shell will be determined
from the expressions

T1 ¼
X1
n¼1

T1ðnÞ cos nj; S ¼
X1
n¼1

SðnÞ sin nj,

M1 ¼
X1
n¼1

M1ðnÞ cos nj; Q�1 ¼
X1
n¼1

Q�1ðnÞ cos nj. ð12Þ

Introduce non-dimensional quantities that are related to the corresponding dimensional ones by the following
interrelations:

fun; vn;wn; u01g ¼ Rfūn; v̄n; w̄n; ū01g,

fT1ð1Þ;Q
�
1ð1Þ;Sð1Þg ¼

1

g
fT̄1ð1Þ; Q̄

�

1ð1Þ; S̄ð1Þg,

o2 ¼
ō2

ghrR2
; M1ð1Þ ¼

RM̄1ð1Þ

g
; m0 ¼ prhR2m̄0; Jyc

¼ prhR4J̄yc
. ð13Þ

In what follows we shall use non-dimensional quantities omitting bars over them.
Substituting Eqs. (11) and (12) into Eqs. (3), (9) and (10), one obtains the following set of ordinary

differential equations for determination of the frequencies and modes of the natural vibrations of our
construction:

L
ðnÞ
11 ðunÞ þ L

ðnÞ
12 ðvnÞ þ L

ðnÞ
13 ðwnÞ þ o2un ¼ 0,

L
ðnÞ
21 ðunÞ þ L

ðnÞ
22 ðvnÞ þ L

ðnÞ
23 ðwnÞ þ o2vn ¼ 0,

L
ðnÞ
31 ðunÞ þ L

ðnÞ
32 ðvnÞ þ L

ðnÞ
33 ðwnÞ � o2wn ¼ 0,

ðn ¼ 1; 2 . . .Þ, ð14Þ

where the operators L
ðnÞ
ij ði; j ¼ 1; 2; 3Þ are obtained from the operators Lij after separation of the angle

variable.
Eq. (14) describes system natural vibrations of two types. Those of the first type correspond to joint motion

of the body and shell in the plane Oxz. In this case one should solve the set of Eqs. (14) with n ¼ 1 using the
following boundary conditions at z ¼ l and 0:

ðQ�1ð1Þ � Sð1ÞÞz¼l ¼ o2m0u01,

ðT1ð1Þ þM1ð1Þ þQ�1ð1Þlc � Sð1ÞlcÞz¼l ¼ o2Jyc
W02, ð15Þ

u1ðlÞ ¼ �W02; v1ðlÞ ¼ W02lc � u01; w1ðlÞ ¼ �v1ðlÞ;
dw1

dz

����
z¼l

¼ W02, (16)

u1ð0Þ ¼ v1ð0Þ ¼ w1ð0Þ ¼
dw1

dz

����
z¼0

¼ 0. (17)

Vibrations of the second type can exist for u01 ¼ W02 � 0 and n41 only. In this case the solutions of the set
(14) have to meet the following boundary conditions:

unðlÞ ¼ vnðlÞ ¼ wnðlÞ ¼
dwn

dz

����
z¼l

¼ 0,

unð0Þ ¼ vnð0Þ ¼ wnð0Þ ¼
dwn

dz

����
z¼0

¼ 0. ð18Þ

The boundary conditions obtained for two types of system vibrations arise from orthogonality of the
functions sin nj and cos nj in the interval ½0; 2p�.

Thus, when the number of circumferential waves n41, we have the classical problem on determination of
frequencies and modes of non-axisymmetric natural vibrations of a cylindrical shell with two rigidly fixed
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ends. And when n ¼ 1, we have a spectral problem with frequency parameter entering not only Eqs. (14) but
the boundary conditions (15) as well. Besides, the boundary conditions (15) contain the generalized
coordinates of rigid body motion. They are related to the corresponding shell displacements at z ¼ l with the
geometric compatibility conditions (16). The minimal frequency of the system vibrations is the lower of two
frequencies corresponding to the first or second type of vibrations. From the above equations and boundary
conditions it also follows that for every eigenfrequency the only term remaining in the series (11) for
displacements u, v and w is that with the index n ¼ 1 (at joint vibrations of the body and shell) or with an
arbitrary index n41 (for the second type of vibrations).

If in the set of Eqs. (14) there are coefficients that do not depend on the longitudinal coordinate z, then one
can obtain the exact solution of the boundary value problem (14)–(17) and (14), (18) on the basis of the Euler
method. Such approach, however, leads to rather complicated solution algorithms for the formulated
problems. That is why we shall construct approximate solutions of the considered spectral problems using
their equivalent variational statements. It was noted earlier that the most complicated boundary conditions
(15) are natural ones for the corresponding functional obtained from the variational Eq. (4). So minimization
of that functional should be made on the class of functions that meet the boundary conditions (16) and (17).
For system vibrations of the second type, the class of admissible functions must obey the boundary conditions
(18). Therefore let us present the sought functions for both types of vibrations in the following form:

unðzÞ ¼
XN

j¼1

ajUjðzÞ þ d1nW02u0ðzÞ,

vnðzÞ ¼
XN

j¼1

bjVjðzÞ þ d1nðW02lc � u01Þv0ðzÞ,

wnðzÞ ¼
XN

j¼1

cjW jðzÞ þ d1nðu01w0ðzÞ þ W02f ðzÞÞ, ð19Þ

where aj, bj and cj are some arbitrary constants to be determined later on along with the constants u01 and W02,
d1n ¼ 1 when n ¼ 1 and d1n ¼ 0 when n41.

We take the functions u0ðzÞ, v0ðzÞ, w0ðzÞ and f ðzÞ and coordinate functions UjðzÞ, V jðzÞ and W jðzÞ in the
expressions (19) to be of the following form:

u0ðzÞ ¼ �
1

l
z; v0ðzÞ ¼ �u0ðzÞ; w0ðzÞ ¼

3

l2
�

2

l3
z

� �
z2,

f ðzÞ ¼ �
l þ 3lc

l2
þ

2lc þ l

l3
z

� �
z2; UjðzÞ ¼ VjðzÞ,

UjðzÞ ¼ zðz� lÞPj

2z

l
� 1

� �
; W jðzÞ ¼ z2ðz� lÞ2Pj

2z

l
� 1

� �
ðj ¼ 1; 2 . . . ;NÞ. ð20Þ

Here PjðzÞ are the Legendre polynomials shifted by unity in the index j. One can calculate them

Pjþ2ðzÞ ¼
1

j þ 1
½ð2j þ 1ÞzPjþ1ðzÞ � jPjðzÞ� ðj ¼ 1; 2; . . .Þ. (21)

The proposed presentations of the sought solutions as Eq. (19) meet the main boundary conditions (16), (17)
(for vibrations of the first type) and Eq. (18) (for vibrations of the second type) at any values of the vector

X ¼ ½a1; a2; . . . ; aN ; b1; b2; . . . ; bN ; c1; c2; . . . ; cN ; u01; W02�T.

The components of the vector X are determined further from the stationary conditions for the above
functional. In this case the initial problem is reduced to solving the uniform algebraic set

ðA� o2BÞX ¼ 0, (22)

where A and B are symmetric matrices of the order 3N þ 2 for n ¼ 1 and 3N for n41.
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One should note that, contrary to the traditional Ritz method, the solutions of the form (19) for the sought
functions when n ¼ 1 are not independent because they contain general unknown constants u01 and W02. As a
result, formation of elements of the matrices A and B on the basis of the standard approach leads to rather
cumbersome expressions for them, and the calculation algorithm becomes considerably more complicated. In
this connection, the variation of the corresponding functional is presented as

dI ¼

Z g

0

½C11ðun; dunÞ þC12ðvn; dunÞ þC13ðwn; dunÞ

þC21ðun; dvnÞ þC22ðvn; dvnÞ þC23ðwn; dvnÞ

þC31ðun; dwnÞ þC32ðvn; dwnÞ þC33ðwn; dwnÞ�dz

� o2

Z g

0

ðundun þ vndvn þ wndwnÞdz

� d1no2ðm0u01du01 þ Jyc
W02dW02Þ. ð23Þ

The introduced differential operators are of the following form:

C11ðp; qÞ ¼
dp

dz

dq

dz
þ n1n2pq; C12ðp; qÞ ¼ nnp

dq

dz
� n1n

dp

dz
q,

C13ðp; qÞ ¼ np
dq

dz
; C23ðp; qÞ ¼ npq; C22ðp; qÞ ¼ n2pqþ n1

dp

dz

dq

dz
,

C33ðp; qÞ ¼ pqþ c2
d2p

dz2
� nn2p

� �
d2q

dz2
þ n4p� nn2 d2p

dz2

� �
qþ 2ð1� nÞn2 dp

dz

dq

dz

� �
,

where p and q are arbitrary functions.
Use of the variation of the functional as Eq. (23) makes it possible to comparatively easily determine, on a

general basis, the elements of the matrices A and B. It also makes much more convenient programming of the
proposed algorithm for solving the problem considered. The elements of the upper (over the leading diagonal)
part of the matrices A and B are given in Appendix A.

When n41, the matrices A and B are obtained from the constructed ones by removal of two last rows and
columns.

Thus the problem of determination of natural frequencies and modes of non-axisymmetric vibrations of a
cylindrical shell with a rigid body attached to one of its ends was reduced to calculation of one-dimensional
integrals followed by solving the generalized eigenvalue problem (22). With the proper choice of
representation of the sought solutions that provide the required accuracy of calculations and stability of
calculation procedure, the latter problem is solved easily using the standard software for modern PC. The
proposed algorithm of solving the considered problem may be applied (without essential alterations) also for a
shell whose elastic-mass characteristics vary along the axis.

4. A simplified statement of the problem and its solution

The initial problem can be essentially simplified in the case of relatively long shells, if one assumes that shell
cross-sections remainn plane when being deformed. Then a shell can be replaced by an equivalent beam whose
linear mass m ¼ rF ¼ 2pRhr and bending rigidity EJ ¼ EpR3h are constant along the beam length. In what
follows we shall apply the refined Timoshenko’s beam theory which takes into account shear strains and
rotary inertia of beam cross-section. Then, in accordance with the results of the works [10,11,14], beam
bending vibrations in the plane Oxz are described by a set of partial differential equations

rF
q2w
qt2
� kGF

q2w
qz2
�

qc
qz

� �
¼ 0;

rJ
q2c
qt2
� EJ

q2c
qz2
� kGF

qw

qz
� c

� �
¼ 0;

(24)
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where wðz; tÞ are the displacements of the points of the neutral axis of elastic beam along the axis Ox; cðz; tÞ is
the angle the tangential curve makes with the beam elastic line due to action of bending moments; GF is the
beam shear rigidity. The shear coefficient k will be determined from the expression k ¼ 2ð1� nÞ=ð4þ 3nÞ
proposed in Ref. [15].

If the beam end is rigidly fixed at z ¼ 0 and a rigid body is attached to the other end at z ¼ l, then the
solutions of Eq. (24) must meet the following boundary conditions:

kGF
qw

qz
� c

� �
þm0

q2w

qt2
þ L0

q2c
qt2

� �
z¼l

¼ 0,

EJ
qc
qz
þ L0

q2w

qt2
þ Jy1

q2c
qt2

� �
z¼l

¼ 0; wð0; tÞ ¼ cð0; tÞ ¼ 0, ð25Þ

where L0 ¼ m0lc, Jy1 ¼ m0l
2
c þ Jyc

.
In the case of free harmonic vibrations of the system with frequency o, we present the functions wðz; tÞ and

cðz; tÞ as

wðz; tÞ ¼W ðzÞeiot; cðz; tÞ ¼ CðzÞeiot.

Let us take the radius of the cylindrical shell R to be the characteristic linear size of the system studied and
introduce the following non-dimensional quantities which are related to the corresponding dimensional ones
with the following formulae:

b2 ¼
o2R4rF

EJ
; r2 ¼

J

FR2
; s2 ¼

EJ

kGFR2
,

m̄0 ¼
m0

rFR
; J̄yc

¼
Jyc

rFR3
; W̄ ¼

W

R
.

The interrelation between the non-dimensional quantities introduced according to expressions (13) (in what
follows they will be designated by ð�Þ) and those above is of the following form:

ō2 ¼
ð1� n2Þ

2
b2; m̄0 ¼

1

2
m�0; J̄yc

¼
1

2
J̄
�

yc
.

For the sake of simplicity, from now on we shall omit bars over non-dimensional quantities.
After separating the variable t in Eqs. (24) and (25) and some simple transformations, the initial problem

can be reduced to the following uniform problem concerning the function W ðzÞ:

d4W

dz4
þ b2

d2W

dz2
� b2b0W ¼ 0,

W ð0Þ ¼ 0; b1
dW

dz
þ s2

d3W

dz

� �
z¼0

¼ 0,

f 1

d3W

dz3
þ f 2

dW

dz
þ f 3W

� �
z¼l

¼ 0,

f 4

d3W

dz3
þ f 5

d2W

dz2
þ f 6

dW

dz
þ f 7W

� �
z¼l

¼ 0, ð26Þ

where

b0 ¼ 1� b2r2s2; b1 ¼ b2s4 þ 1; b2 ¼ b2ðr2 þ s2Þ,

f 1 ¼ 1þ b2s2L0; f 2 ¼ b2b1L0 þ b2; f 3 ¼ b2m0b0; f 4 ¼ b2s2Jy1 ,

f 5 ¼ �b0; f 6 ¼ b2b1Jy1 ; f 7 ¼ b0b
2
ðL0 � s2Þ.

It should be noted that the parameter r2 is related to the effect of rotary inertia, while the parameter s2 is
related to the effects of shear strain. The equations for an Euler–Bernoulli beam can be obtained from the
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Timoshenko equations if one sets r2 ¼ s2 ¼ 0. Similarly, the equations of beam motion (without regard for the
effect of rotary inertia) may be obtained if one sets r2 ¼ 0. To obtain the equations for a Rayleigh beam, one
should set s2 ¼ 0.

The general solution of the equation from Eq. (26) at mXb2=2 is

W ðb; zÞ ¼ A sinh g1zþ B cosh g1zþ C sin g2zþD cos g2z, (27)

where g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� b2=2

p
, g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ b2=2

p
. When mob2=2,

W ðb; zÞ ¼ A0 sin g1zþ B0 cos g1zþ C0 sin g2zþD0 cos g2z, (28)

where g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=2� m

p
. Here m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2Þ

2
þ b0b

2
q

.
For further use of solutions (27) and (28), it is convenient to represent them as

W iðb; zÞ ¼ C1iSiðb; zÞ þ C2iTiðb; zÞ þ C3iUiðb; zÞ þ C4iV iðb; zÞ. (29)

Here and later on i ¼ 1 when mXb2=2 and i ¼ 2 when mob2=2.
The functions Si, Ti, Ui and V i are linear combinations of the functions entering Eqs. (27) and (28). They

are of the following form:

S1ðb; zÞ ¼
1

2m
g22 cosh g1zþ g21 cos g2z
� �

,

T1ðb; zÞ ¼
1

2m
g22
g1

sinh g1zþ
g21
g2

sin g2z

� �
,

U1ðb; zÞ ¼
1

2m
cosh g1z� cos g2z
� �

,

V 1ðb; zÞ ¼
1

2m
1

g1
sinh g1z�

1

g2
sin g2z

� �
,

S2ðb; zÞ ¼
1

2m
g22 cos g1z� g21 cos g2z
� �

,

T2ðb; zÞ ¼
1

2m
g22
g1

sin g1z�
g21
g2

sin g2z

� �
,

U2ðb; zÞ ¼
1

2m
cos g1z� cos g2z
� �

,

V 2ðb; zÞ ¼
1

2m
1

g1
sin g1z�

1

g2
sin g2z

� �
. ð30Þ

When representing the solutions in form (29), arbitrary constants are expressed through the values of the
functions W i and their derivatives at the point z ¼ 0

W iðb; 0Þ ¼ C1i; W 0
iðb; 0Þ ¼ C2i; W 00

i ðb; 0Þ ¼ C3i; W 000
i ðb; 0Þ ¼ C4i.

By inserting solution (29) into the boundary conditions from Eq. (26), one obtains a uniform algebraic set in
the constants of integration C3i and C4i

C3ia
ðiÞ
11 þ C4ia

ðiÞ
12 ¼ 0;

C3ia
ðiÞ
21 þ C4ia

ðiÞ
22 ¼ 0:

(31)

Here C1i ¼ 0 and C2i ¼ �K1C4i, where K1 ¼ s2=b1. The elements a
ðiÞ
kj are given in Appendix B.

Thus, solving the initial problem in simplified setting is reduced to solving the set of algebraic
equations (31).

5. Numerical results

Following are some results of calculation of frequencies and modes of natural vibrations of our construction
performed with the algorithms presented above. From now on we assume that the rigid body attached to the
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shell is in the form of circular cylinder of radius R and height H ¼ 2lc. In this case the non-dimensional
moment of inertia of the rigid body is

J�yc
¼

m�0
12
ð3þH2Þ.

In our calculations we took the following values of non-dimensional parameters of the system: h ¼ 0:01;
lc ¼ 0:5; n ¼ 0:3. Both the shell length and body mass were varied.

Table 1 presents the results of calculations of the first five lower frequencies of bending vibrations of a
‘‘body–shell’’ mechanical system, ðn ¼ 1Þ at l ¼ 4 and m�0 ¼ 100, depending on the number of terms N in the
expansions (19).

The results given in Table 1 indicate a sufficiently fast convergence of the Ritz sequences. As relative length
of the shell goes down, the convergence of the computational process is improving as compared to the data
given in Table 1. Increase of shell length ðl410Þ should be accompanied by increasing the number of the
coordinate functions. One should note that the chosen form of representation of the sought solutions and their
approximation using the Legendre polynomials provide stability of the computational process up to Np40.
This fact enables one to calculate frequencies and modes of natural vibrations with high accuracy for a
sufficiently wide range of the starting parameters of the mechanical system considered.

The behaviour of natural frequencies of the construction depending on the rigid body mass m� is presented
in Table 2, where one can see that increase of the rigid body mass leads to decrease of the system frequencies.
In the limiting case (denoted as ð�Þ) the frequencies are equal to the corresponding frequencies of vibrations of
a shell of circumferential form (with n ¼ 1) with two rigidly fixed ends.

Table 3 presents some results of calculation of minimal frequencies o1ðnÞ for a shell with rigidly fixed ends in
the parameter range l=R ¼ 2–14 and w ¼ R=h ¼ 200–1000 (n41 is the second type of system vibrations).
Given in parentheses are the numbers n of circular waves of shell surface corresponding to these frequencies
(whose values are multiplied by ten). One can see that increase of shell length is accompanied by decreasing of
the minimal frequencies of the system, concurrently with decreasing of the corresponding number n. Decrease
Table 1

Five lower frequencies of non-axisymmetric vibrations of a ‘‘body–shell’’ mechanical system depending on the number of terms in

expansions (19) at l ¼ 4, m�0 ¼ 100

N o1 o2 o3 o4 o5

1 0.02460 0.13472 0.36141 0.99067 1.44920

2 0.01632 0.13185 0.35650 0.61950 0.93549

3 0.01574 0.12695 0.32523 0.61877 0.81494

4 0.01500 0.12681 0.32491 0.57754 0.81054

5 0.01495 0.12637 0.32272 0.57739 0.76240

6 0.01480 0.12636 0.32271 0.57617 0.76237

7 0.01479 0.12631 0.32201 0.57616 0.76122

8 0.01474 0.12630 0.32200 0.57588 0.76121

9 0.01474 0.12630 0.32175 0.57588 0.76106

10 0.01474 0.12630 0.32175 0.57582 0.76105

Table 2

Five lower frequencies of non-axisymmetric vibrations of a ‘‘body–shell’’ mechanical system depending on the rigid body mass at l ¼ 4

m�0 o1 o2 o3 o4 o5

0 0.10799 0.34989 0.62869 0.73160 0.81765

102 0.01474 0.12629 0.32175 0.57582 0.76106

103 0.00469 0.04226 0.30743 0.57360 0.76019

104 0.00149 0.01344 0.30614 0.57339 0.76010

105 0.00047 0.00425 0.30602 0.57337 0.76010

(�) — — 0.30600 0.57336 0.76010
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Table 4

The frequencies of system vibrations obtained with different calculation techniques (I—the shell technique, II—the Timoshenko’s beam

technique, III and IV—the beam technique with allowance made for either shear strains or rotary inertia only, V—the Euler–Bernoulli

beam technique)

l 2 4 6 8 10

o1

I 0.04104 0.02062 0.01266 0.00868 0.00640

II 0.04152 0.02073 0.01269 0.00868 0.00640

III 0.04156 0.02076 0.01271 0.00869 0.00640

IV 0.05582 0.02372 0.01367 0.00909 0.00660

V 0.05600 0.02376 0.01369 0.00910 0.00660

o2

I 0.21491 0.16684 0.12665 0.09380 0.07040

II 0.21560 0.16707 0.12666 0.09380 0.07040

III 0.21856 0.16971 0.12842 0.09490 0.07110

IV 0.45942 0.24775 0.16542 0.11600 0.08380

V 0.46749 0.25257 0.16903 0.11840 0.08530

o3

I 0.59670 0.34020 0.25126 0.20393 0.16650

II 0.68582 0.35616 0.25673 0.20530 0.16650

III 0.68635 0.35722 0.25836 0.20749 0.16890

IV 2.39765 0.86431 0.46155 0.30342 0.22220

V 3.86339 1.02308 0.501883 0.32016 0.23180

o4

I 0.84825 0.57846 0.39471 0.30000 0.24788

II 1.29893 0.62354 0.40681 0.30614 0.25096

III 1.33409 0.64521 0.41891 0.31307 0.25542

IV 3.99919 1.69206 0.94024 0.60134 0.42342

V 10.47193 2.65297 1.20558 0.70117 0.46959

Table 3

The minimal frequencies o1n for a cylindrical shell with rigidly fixed ends, n41—the body is stationary (the real frequency values are

multiplied by 10)

l w ¼ 200 w ¼ 400 w ¼ 600 w ¼ 800 w ¼ 1000

2 1:12969ð7Þ 0:82296ð9Þ 0:67886ð10Þ 0:59474ð11Þ 0:53114ð11Þ
4 0:58626ð5Þ 0:42330ð6Þ 0:34532ð7Þ 0:30348ð8Þ 0:26967ð8Þ
6 0:39910ð4Þ 0:28260ð5Þ 0:23213ð6Þ 0:20214ð6Þ 0:18249ð7Þ
8 0:29661ð4Þ 0:21836ð5Þ 0:17340ð5Þ 0:15440ð5Þ 0:13619ð6Þ
10 0:24526ð3Þ 0:16821ð4Þ 0:14396ð5Þ 0:12075ð5Þ 0:10834ð5Þ
12 0:19431ð3Þ 0:14264ð4Þ 0:11534ð4Þ 0:10411ð4Þ 0:09115ð5Þ
14 0:16645ð3Þ 0:12714ð3Þ 0:09907ð4Þ 0:08577ð4Þ 0:07886ð4Þ

Y.V. Trotsenko / Journal of Sound and Vibration 292 (2006) 535–551546
of shell thickness also leads to decreasing of the minimal frequencies, but accompanied with increasing of n. A
comparison of the data presented in this table with the results of the work [5] (obtained on the basis of the
exact solution of the eigenvalue problem considered) demonstrates that they coincide completely.

Table 4 presents the results of calculations of the first four frequencies of bending vibrations of shell and
body depending on the shell length. The calculations were performed on the basis of the technical shell
theory—ðIÞ, using the Timoshenko’s beam theory—ðIIÞ, the beam theory with allowance made for shear
strains only ðr2 ¼ 0Þ—ðIIIÞ, with allowance made for rotary inertia of the beam cross-section only ðs2 ¼ 0Þ—
ðIV Þ and using the Euler–Bernoulli beam technique ðr2 ¼ s2 ¼ 0Þ—ðV Þ.

The results presented in Table 4 demonstrate that, at the chosen body mass, the elementary beam theory
gives good results when calculating the first frequency for long shells only ðlX10Þ. Taking into account shear
strains and rotary inertia in the beam equations considerably improve accuracy of the beam approximation
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when dealing with the construction considered. To illustrate, when l46, the first two frequencies calculated
using the shell theory and Timoshenko’s beam theory are practically the same, while for the third and fourth
frequencies the discrepancies are no more than 3%. In this case, allowance for shear strains is of crucial
importance. Rotary inertia may be of importance when calculating the higher frequencies of the system.

Fig. 2 gives spatial presentation of the surface of relative error di (in per cent) at determination of the first
three frequencies of system vibrations with the Timoshenko’s beam theory as a function of the attached body
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Fig. 2. The relative error di% at calculation of the first three system frequencies with the Timoshenko’s beam theory depending on the

rigid body mass m0 and shell length l.
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mass and shell length. One can see that the errors di depend essentially on the attached body mass and shell
length. Increase of shell length (at a fixed body mass), as well as increase of body mass (at a fixed shell length),
result in decrease of errors di. For instance, the error in determination of the first frequency of system
vibrations does not exceed 5%, even when m041 and l41. The errors in determination of the first three
frequencies of system vibrations do not exceed 1% when m041 and l46.

The amplitude values of the first four radial modes of shell vibrations (divided by their maximal values W i)
are presented in Fig. 3 ðz� ¼ z=lÞ. Solid lines show the vibration modes determined with the shell theory,
dashed lines—those determined with the Timoshenko’s beam theory and dash-dotted lines—those determined
with the elementary beam theory. The initial data were those from Table 4 at l ¼ 4. One can see that the
Timoshenko’s beam model makes it possible to determine not only the lower frequencies of the mechanical
system considered but the corresponding vibration modes as well. The biggest distinctions in vibration modes
calculated using the mentioned theories are observed in the vicinity of the shell end cross-sections. These
distinctions are of local character. They are due to the edge effects in shell deformation that grow as the
relative shell thickness decreases. At the chosen values of system parameters, the elementary beam theory, in
its turn, gives satisfactory results when calculating the first vibration mode only.

In conclusion it should be noted that, when determining the dynamic characteristics of the mechanical
system considered according to the proposed calculation procedure using the Timoshenko’s beam theory, we
made a comparison with the corresponding table and graphic data obtained earlier in Ref. [11]. Our results
were found to be in full agreement with those determined in Ref. [11].
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6. Conclusion

We constructed a mathematical model of coupled non-axisymmetric vibrations of a circular cylindrical shell
and a perfectly rigid body attached to one of the shell ends. It is shown in the context of linear theory that the
natural vibrations of the above system are separated into two types. Those of the first type are due to coupled
vibrations of body and shell in one of the planes of symmetry of the system when the number of
circumferential shell waves is unity. At vibrations of the second type, the shell executes spatial non-
axisymmetric vibrations with the number of circumferential waves over unity; in this case the body remains
stationary. The minimal frequency of the elastic system considered is the smallest of the lowest frequencies of
vibrations of the first and second types.

We propose approximate solutions of the spectral problems obtained. They are determined on the basis of
equivalent variational statements of the problems. We performed an analysis of these solutions, as well
compared them with the (existing in the literature) exact ones for vibrations of the second type. The results of
comparison evidence that our technique of solving the problems considered makes it possible to obtain rather
accurate results when calculating the lower vibration modes in a wide range of the initial system parameters.

We constructed the exact solution of the problem (in its approximate setting) by replacing the shell with an
equivalent Timoshenko beam. The obtained algorithm of calculation of the dynamic characteristics of the
system enables one to perform calculations on the general basis for simpler beam theories too. It is shown that
insertion of shear strains and rotary inertia into the equations of the beam theory results in essential
improvement of the accuracy of approximating the shell with a beam. In this case the error of such
approximation depends, to a great extent, on the shell length and mass of the attached body.
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Appendix A. The elements of the upper (over the principal diagonal) part of the matrices A and B in the algebraic

set (22)

ai; j ¼

Z l

0

C11ðUj ;UiÞdz; ai; jþN ¼

Z l

0

C12ðV j ;ViÞdz; ai; jþ2N ¼

Z l

0

C13ðW j ;UiÞdz,

ai;3Nþ1 ¼

Z l

0

½C13ðw0;UiÞ �C12ðv0;UiÞ�dz,

ai;3Nþ2 ¼

Z l

0

½C11ðu0;UiÞ þ lcC12ðv0;UiÞ þC13ðf ;UiÞ�dz,

aiþN ; jþN ¼

Z l

0

C22ðVj ;ViÞdz; aiþN; jþ2N ¼

Z l

0

C23ðW j ;V iÞdz,

aiþN ;3Nþ1 ¼

Z l

0

½C23ðw0;ViÞ �C22ðv0;ViÞ�dz,

aiþN ;3Nþ2 ¼

Z l

0

½C12ðVi; u0Þ þ lcC22ðv0;ViÞ þC23ðf ;V iÞ�dz,

aiþ2N; jþ2N ¼

Z l

0

C33ðW j ;W iÞdz,

aiþ2N;3Nþ1 ¼

Z l

0

½C33ðw0;W iÞ �C23ðW i; v0Þ�dz,

aiþ2N;3Nþ2 ¼

Z l

0

½C13ðW i; u0Þ þ lcC23ðW i; v0Þ þC33ðf ;W iÞ�dz,
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a3Nþ1;3Nþ1 ¼

Z l

0

½C22ðv0; v0Þ � 2C23ðw0; v0Þ þC33ðw0;w0Þ�dz,

a3Nþ1;3Nþ2 ¼

Z l

0

½C33ðf ;w0Þ �C12ðv0; u0Þ � lcC22ðv0; v0Þ

�C23ðf ; v0Þ þC13ðw0; u0Þ þ lcC23ðw0; v0Þ�dz,

a3Nþ2;3Nþ2 ¼

Z l

0

½C11ðu0; u0Þ þ 2lcC12ðv0; u0Þ þ 2C13ðf ; u0Þ

þ l2cC22ðv0; v0Þ þ 2lcC23ðf ; v0Þ þC33ðf ; f Þ�dz,

bi; j ¼

Z l

0

UiUj dz; bi; jþN ¼ bi; jþ2N ¼ bi;3Nþ1 ¼ 0,

bi;3Nþ2 ¼

Z l

0

u0Ui dz; biþN; jþN ¼

Z l

0

ViVj dz,

biþN ; jþ2N ¼ 0; biþN ;3Nþ1 ¼ �

Z l

0

v0V i dz; biþN ;3Nþ2 ¼ lc

Z l

0

v0V i dz,

biþ2N ; jþ2N ¼

Z l

0

W jW i dz; biþ2N;3Nþ1 ¼

Z l

0

w0W i dz,

biþ2N ;3Nþ2 ¼

Z l

0

fW i dz; b3Nþ1;3Nþ1 ¼

Z l

0

ðv20 þ w2
0Þdzþm0,

b3Nþ1;3Nþ2 ¼

Z l

0

ðfw0 � lcv
2
0Þdz; b3Nþ2;3Nþ2 ¼

Z l

0

ðu2
0 þ l2cv20 þ f 2

Þdzþ Jyc
.

Appendix B. The elements a
ðiÞ
kj in the algebraic set (31)

a
ð1Þ
11 ¼ f 1Q31 þ f 2Q11 þ f 3U1,

a
ð1Þ
12 ¼ f 1ðQ21 � K1zU1Þ þ f 2ðU1 � K1S1Þ þ f 3ðV1 � K1T1Þ,

a
ð1Þ
21 ¼ f 4Q31 þ f 5Q21 þ f 6Q11 þ f 7U1,

a
ð1Þ
22 ¼ f 4ðQ21 � K1zU1Þ þ f 5ðQ11 � K1zV 1Þ þ f 6ðU1 � K1S1Þ þ f 7ðV1 � K1T1Þ,

a
ð2Þ
11 ¼ f 1Q32 þ f 2Q12 þ f 3U2,

a
ð2Þ
12 ¼ f 1ðQ22 þ K1zU2Þ þ f 2ðU2 � K1S2Þ þ f 3ðV2 � K1T2Þ,

a
ð2Þ
21 ¼ f 4Q32 þ f 5Q22 þ f 6Q12 þ f 7U2,

a
ð2Þ
22 ¼ f 4ðQ22 þ K1zU2Þ þ f 5ðQ12 þ K1zV 2Þ þ f 6ðU2 � K1S2Þ þ f 7ðV2 � K1T2Þ.

Here the following designations have been introduced into consideration:Si, Ti, Ui, Vi, ði ¼ 1; 2Þ are the functions

(30) calculated at z ¼ l; z ¼ g21g
2
2;

Q11 ¼
1

2m
ðg1 sinh g1l þ g2 sin g2lÞ,
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Q21 ¼
1

2m
ðg21 cosh g1l þ g22 cos g2lÞ,

Q31 ¼
1

2m
ðg31 sinh g1l � g32 sin g2lÞ,

Q12 ¼
1

2m
ðg2 sin g2l � g1 sin g1lÞ,

Q22 ¼
1

2m
ðg22 cos g2l � g21 cos g1lÞ,

Q32 ¼
1

2m
ðg31 sin g1l � g32 sin g2lÞ.
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